
Turning
Singleton Usage
into Testable
Code
SEE HOW ONE PROTOCOL-BASED
CHANGE MAKES YOUR SINGLETON
INJECTABLE AND THE CODE FULLY
TESTABLE.
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The problem
Service uses URLSession.shared
directly.
Tight coupling makes unit testing
impossible without real network
calls.

On the next slides, you’ll get step-by-
step guide of making this service
testable.

These same steps can be applied to all
other singletons found in your code.
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Step 1 - Inspect  the
used API

CMD-click on data(from: url) to view
the documentation ⤵️
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Step 2 - Define a
protocol

Create URLSessionProtocol
Copy the function signature from
the documentation into your
protocol definition.
Remove default arguments (not
allowed in protocol).
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Step 3 - Conform
URLSession to
URLSessionProtocol

Add the following extension to
make URLSession conforms to your
protocol ⤵️
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Step 4 - Inject
Dependecy

Refactor the service and inject
URLSessionProtocol into it. 

Now a Spy or Mock conforming to
URLSessionProtocol can be created
and injected into PostsAPIService to
simulate API responses.
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Summary
Benefits

No real API calls in tests ✅
Spies and Mocks can be injected in
tests to control API responses
(successes & errors) ✅
Reusable for all other components
requiring URLSession ✅

Remember - These same steps can be
applied to all other singletons found in
your code.
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Let’s Connect!
🔷 Follow for more Swift & testing tips 🔷

 🔷 Comment your thoughts or questions 🔷
 🔷 Reshare to help others level up 🔷


