
Turning
Singleton Usage
into Testable
Code
SEE HOW ONE PROTOCOL-BASED
CHANGE MAKES YOUR SINGLETON
INJECTABLE AND THE CODE FULLY
TESTABLE.

Maciej Gomółka

Maciej Gomółka

The problem
Service uses URLSession.shared
directly.
Tight coupling makes unit testing
impossible without real network
calls.

On the next slides, you’ll get step-by-
step guide of making this service
testable.

These same steps can be applied to all
other singletons found in your code.

Maciej Gomółka

Step 1 - Inspect the
used API

CMD-click on data(from: url) to view
the documentation ⤵️

Maciej Gomółka

Step 2 - Define a
protocol

Create URLSessionProtocol
Copy the function signature from
the documentation into your
protocol definition.
Remove default arguments (not
allowed in protocol).

Maciej Gomółka

Step 3 - Conform
URLSession to
URLSessionProtocol

Add the following extension to
make URLSession conforms to your
protocol ⤵️

Maciej Gomółka

Step 4 - Inject
Dependecy

Refactor the service and inject
URLSessionProtocol into it.

Now a Spy or Mock conforming to
URLSessionProtocol can be created
and injected into PostsAPIService to
simulate API responses.

Maciej Gomółka

Summary
Benefits

No real API calls in tests ✅
Spies and Mocks can be injected in
tests to control API responses
(successes & errors) ✅
Reusable for all other components
requiring URLSession ✅

Remember - These same steps can be
applied to all other singletons found in
your code.

Maciej Gomółka

Let’s Connect!
🔷 Follow for more Swift & testing tips 🔷

 🔷 Comment your thoughts or questions 🔷
 🔷 Reshare to help others level up 🔷

